Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(2 * x^{2} - 5 * x - 7\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-5)^{2} - 4 * 2 *(-7)\) = \(25 +56\) = 81

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+5 + \sqrt{81}}{2*2}\) = \(\frac{+5 + 9}{4}\) = 3.5

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+5 - \sqrt{81}}{2*2}\) = \(\frac{+5 - 9}{4}\) = -1

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-5}{2}*x+\frac{-7}{2}\) = \(x^{2} -2.5 * x -3.5\)

Итого, имеем приведенное уравнение:
\(x^{2} -2.5 * x -3.5 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-3.5\)
\(x_{1}+x_{2}=2.5\)

Методом подбора получаем:
\(x_{1} = 3.5\)
\(x_{2} = -1\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(2*(x-3.5)*(x+1) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 2x²-5x-7

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 2x^2-5x-7

Показать/скрыть таблицу точек
x f(x)
-10243
-9.5221
-9200
-8.5180
-8161
-7.5143
-7126
-6.5110
-695
-5.581
-568
-4.556
-445
-3.535
-326
-2.518
-211
-1.55
-10
-0.5-4
0-7
0.5-9
1-10
1.5-10
2-9
2.5-7
3-4
3.50
45
4.511
518
5.526
635
6.545
756
7.568
881
8.595
9110
9.5126
10143

Похожие калькуляторы:

Добавить комментарий