Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-2 * x^{2} - 3 * x + 2\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-3)^{2} - 4 *(-2) * 2\) = \(9 +16\) = 25

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+3 + \sqrt{25}}{2*(-2)}\) = \(\frac{+3 + 5}{-4}\) = -2

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+3 - \sqrt{25}}{2*(-2)}\) = \(\frac{+3 - 5}{-4}\) = 0.5 (1/2)

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-3}{-2}*x+\frac{2}{-2}\) = \(x^{2} + 1.5 * x -1\)

Итого, имеем приведенное уравнение:
\(x^{2} + 1.5 * x -1 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-1\)
\(x_{1}+x_{2}=-1.5\)

Методом подбора получаем:
\(x_{1} = -2\)
\(x_{2} = 0.5 (1/2)\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-2*(x+2)*(x-0.5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = -2x²-3x+2

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = -2x^2-3x+2

Показать/скрыть таблицу точек
x f(x)
-10-168
-9.5-150
-9-133
-8.5-117
-8-102
-7.5-88
-7-75
-6.5-63
-6-52
-5.5-42
-5-33
-4.5-25
-4-18
-3.5-12
-3-7
-2.5-3
-20
-1.52
-13
-0.53
02
0.50
1-3
1.5-7
2-12
2.5-18
3-25
3.5-33
4-42
4.5-52
5-63
5.5-75
6-88
6.5-102
7-117
7.5-133
8-150
8.5-168
9-187
9.5-207
10-228

Добавить комментарий