Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(2 * x^{2} - 3 * x - 9\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-3)^{2} - 4 * 2 *(-9)\) = \(9 +72\) = 81

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+3 + \sqrt{81}}{2*2}\) = \(\frac{+3 + 9}{4}\) = 3

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+3 - \sqrt{81}}{2*2}\) = \(\frac{+3 - 9}{4}\) = -1.5

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-3}{2}*x+\frac{-9}{2}\) = \(x^{2} -1.5 * x -4.5\)

Итого, имеем приведенное уравнение:
\(x^{2} -1.5 * x -4.5 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-4.5\)
\(x_{1}+x_{2}=1.5\)

Методом подбора получаем:
\(x_{1} = 3\)
\(x_{2} = -1.5\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(2*(x-3)*(x+1.5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 2x²-3x-9

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 2x^2-3x-9

Показать/скрыть таблицу точек
x f(x)
-10221
-9.5200
-9180
-8.5161
-8143
-7.5126
-7110
-6.595
-681
-5.568
-556
-4.545
-435
-3.526
-318
-2.511
-25
-1.50
-1-4
-0.5-7
0-9
0.5-10
1-10
1.5-9
2-7
2.5-4
30
3.55
411
4.518
526
5.535
645
6.556
768
7.581
895
8.5110
9126
9.5143
10161

Похожие калькуляторы:

Добавить комментарий