Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(2 * x^{2} - 15 * x \) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-15)^{2} - 4 * 2 * 0\) = \(225 \) = 225

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+15 + \sqrt{225}}{2*2}\) = \(\frac{+15 + 15}{4}\) = 7.5

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+15 - \sqrt{225}}{2*2}\) = \(\frac{+15 - 15}{4}\) = 0

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-15}{2}*x+\frac{0}{2}\) = \(x^{2} -7.5 * x \)

Итого, имеем приведенное уравнение:
\(x^{2} -7.5 * x = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0\)
\(x_{1}+x_{2}=7.5\)

Методом подбора получаем:
\(x_{1} = 7.5\)
\(x_{2} = 0\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(2*(x-7.5)*(x) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 2x²-15x

[plotting_graphs func='2x^2-15x']

Добавить комментарий