Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(2 * x^{2} - 10 * x + 8\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-10)^{2} - 4 * 2 * 8\) = \(100 - 64\) = 36

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+10 + \sqrt{36}}{2*2}\) = \(\frac{+10 + 6}{4}\) = 4

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+10 - \sqrt{36}}{2*2}\) = \(\frac{+10 - 6}{4}\) = 1

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-10}{2}*x+\frac{8}{2}\) = \(x^{2} -5 * x + 4\)

Итого, имеем приведенное уравнение:
\(x^{2} -5 * x + 4 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=4\)
\(x_{1}+x_{2}=5\)

Методом подбора получаем:
\(x_{1} = 4\)
\(x_{2} = 1\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(2*(x-4)*(x-1) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 2x²-10x+8

[plotting_graphs func='2x^2-10x+8']

Добавить комментарий