Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(20 * x^{2} + 3 * x - 2\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(3^{2} - 4 * 20 *(-2)\) = \(9 +160\) = 169

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-3 + \sqrt{169}}{2*20}\) = \(\frac{-3 + 13}{40}\) = 0.25 (1/4)

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-3 - \sqrt{169}}{2*20}\) = \(\frac{-3 - 13}{40}\) = -0.4 (-2/5)

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{3}{20}*x+\frac{-2}{20}\) = \(x^{2} + 0.15 * x -0.1\)

Итого, имеем приведенное уравнение:
\(x^{2} + 0.15 * x -0.1 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-0.1\)
\(x_{1}+x_{2}=-0.15\)

Методом подбора получаем:
\(x_{1} = 0.25 (1/4)\)
\(x_{2} = -0.4 (-2/5)\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(20*(x-0.25)*(x+0.4) = 0\)


Основной калькулятор для решения квадратных уравнений

Похожие калькуляторы:

Добавить комментарий