Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(18 * x^{2} + 15 * x + 3\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(15^{2} - 4 * 18 * 3\) = \(225 - 216\) = 9

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-15 + \sqrt{9}}{2*18}\) = \(\frac{-15 + 3}{36}\) = -0.33 (-1/3)

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-15 - \sqrt{9}}{2*18}\) = \(\frac{-15 - 3}{36}\) = -0.5 (-1/2)

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{15}{18}*x+\frac{3}{18}\) = \(x^{2} + 0.83 * x + 0.17\)

Итого, имеем приведенное уравнение:
\(x^{2} + 0.83 * x + 0.17 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0.17\)
\(x_{1}+x_{2}=-0.83\)

Методом подбора получаем:
\(x_{1} = -0.33 (-1/3)\)
\(x_{2} = -0.5 (-1/2)\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(18*(x+0.33)*(x+0.5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 18x²+15x+3

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 18x^2+15x+3

Показать/скрыть таблицу точек
x f(x)
-101653
-9.51485
-91326
-8.51176
-81035
-7.5903
-7780
-6.5666
-6561
-5.5465
-5378
-4.5300
-4231
-3.5171
-3120
-2.578
-245
-1.521
-16
-0.50
03
0.515
136
1.566
2105
2.5153
3210
3.5276
4351
4.5435
5528
5.5630
6741
6.5861
7990
7.51128
81275
8.51431
91596
9.51770
101953

Добавить комментарий