Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(12 * x^{2} - 8 * x \) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-8)^{2} - 4 * 12 * 0\) = \(64 \) = 64

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+8 + \sqrt{64}}{2*12}\) = \(\frac{+8 + 8}{24}\) = 0.67 (2/3)

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+8 - \sqrt{64}}{2*12}\) = \(\frac{+8 - 8}{24}\) = 0

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-8}{12}*x+\frac{0}{12}\) = \(x^{2} -0.67 * x \)

Итого, имеем приведенное уравнение:
\(x^{2} -0.67 * x = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0\)
\(x_{1}+x_{2}=0.67\)

Методом подбора получаем:
\(x_{1} = 0.67 (2/3)\)
\(x_{2} = 0\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(12*(x-0.67)*(x) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 12x²-8x

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 12x^2-8x

Показать/скрыть таблицу точек
x f(x)
-101280
-9.51159
-91044
-8.5935
-8832
-7.5735
-7644
-6.5559
-6480
-5.5407
-5340
-4.5279
-4224
-3.5175
-3132
-2.595
-264
-1.539
-120
-0.57
00
0.5-1
14
1.515
232
2.555
384
3.5119
4160
4.5207
5260
5.5319
6384
6.5455
7532
7.5615
8704
8.5799
9900
9.51007
101120

Добавить комментарий