Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(12 * x^{2} - 8 * x - 4\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-8)^{2} - 4 * 12 *(-4)\) = \(64 +192\) = 256

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+8 + \sqrt{256}}{2*12}\) = \(\frac{+8 + 16}{24}\) = 1

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+8 - \sqrt{256}}{2*12}\) = \(\frac{+8 - 16}{24}\) = -0.33 (-1/3)

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-8}{12}*x+\frac{-4}{12}\) = \(x^{2} -0.67 * x -0.33\)

Итого, имеем приведенное уравнение:
\(x^{2} -0.67 * x -0.33 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-0.33\)
\(x_{1}+x_{2}=0.67\)

Методом подбора получаем:
\(x_{1} = 1\)
\(x_{2} = -0.33 (-1/3)\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(12*(x-1)*(x+0.33) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 12x²-8x-4

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 12x^2-8x-4

Показать/скрыть таблицу точек
x f(x)
-101276
-9.51155
-91040
-8.5931
-8828
-7.5731
-7640
-6.5555
-6476
-5.5403
-5336
-4.5275
-4220
-3.5171
-3128
-2.591
-260
-1.535
-116
-0.53
0-4
0.5-5
10
1.511
228
2.551
380
3.5115
4156
4.5203
5256
5.5315
6380
6.5451
7528
7.5611
8700
8.5795
9896
9.51003
101116

Похожие калькуляторы:

Добавить комментарий