Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(11 * x^{2} - 11 * x \) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-11)^{2} - 4 * 11 * 0\) = \(121 \) = 121

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+11 + \sqrt{121}}{2*11}\) = \(\frac{+11 + 11}{22}\) = 1

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+11 - \sqrt{121}}{2*11}\) = \(\frac{+11 - 11}{22}\) = 0

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-11}{11}*x+\frac{0}{11}\) = \(x^{2} -1 * x \)

Итого, имеем приведенное уравнение:
\(x^{2} -1 * x = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0\)
\(x_{1}+x_{2}=1\)

Методом подбора получаем:
\(x_{1} = 1\)
\(x_{2} = 0\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(11*(x-1)*(x) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 11x²-11x

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 11x^2-11x

Показать/скрыть таблицу точек
x f(x)
-101210
-9.51097.25
-9990
-8.5888.25
-8792
-7.5701.25
-7616
-6.5536.25
-6462
-5.5393.25
-5330
-4.5272.25
-4220
-3.5173.25
-3132
-2.596.25
-266
-1.541.25
-122
-0.58.25
00
0.5-2.75
10
1.58.25
222
2.541.25
366
3.596.25
4132
4.5173.25
5220
5.5272.25
6330
6.5393.25
7462
7.5536.25
8616
8.5701.25
9792
9.5888.25
10990

Похожие калькуляторы:

Добавить комментарий