Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(10 * x^{2} + 7 * x + 1\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(7^{2} - 4 * 10 * 1\) = \(49 - 40\) = 9

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-7 + \sqrt{9}}{2*10}\) = \(\frac{-7 + 3}{20}\) = -0.2 (-1/5)

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-7 - \sqrt{9}}{2*10}\) = \(\frac{-7 - 3}{20}\) = -0.5 (-1/2)

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{7}{10}*x+\frac{1}{10}\) = \(x^{2} + 0.7 * x + 0.1\)

Итого, имеем приведенное уравнение:
\(x^{2} + 0.7 * x + 0.1 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0.1\)
\(x_{1}+x_{2}=-0.7\)

Методом подбора получаем:
\(x_{1} = -0.2 (-1/5)\)
\(x_{2} = -0.5 (-1/2)\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(10*(x+0.2)*(x+0.5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 10x²+7x+1

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 10x^2+7x+1

Показать/скрыть таблицу точек
x f(x)
-10931
-9.5837
-9748
-8.5664
-8585
-7.5511
-7442
-6.5378
-6319
-5.5265
-5216
-4.5172
-4133
-3.599
-370
-2.546
-227
-1.513
-14
-0.50
01
0.57
118
1.534
255
2.581
3112
3.5148
4189
4.5235
5286
5.5342
6403
6.5469
7540
7.5616
8697
8.5783
9874
9.5970
101071

Похожие калькуляторы:

Добавить комментарий