Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(10 * x^{2} - 6 * x \) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-6)^{2} - 4 * 10 * 0\) = \(36 \) = 36

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+6 + \sqrt{36}}{2*10}\) = \(\frac{+6 + 6}{20}\) = 0.6 (3/5)

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+6 - \sqrt{36}}{2*10}\) = \(\frac{+6 - 6}{20}\) = 0

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-6}{10}*x+\frac{0}{10}\) = \(x^{2} -0.6 * x \)

Итого, имеем приведенное уравнение:
\(x^{2} -0.6 * x = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0\)
\(x_{1}+x_{2}=0.6\)

Методом подбора получаем:
\(x_{1} = 0.6 (3/5)\)
\(x_{2} = 0\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(10*(x-0.6)*(x) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 10x²-6x

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 10x^2-6x

Показать/скрыть таблицу точек
x f(x)
-101060
-9.5959.5
-9864
-8.5773.5
-8688
-7.5607.5
-7532
-6.5461.5
-6396
-5.5335.5
-5280
-4.5229.5
-4184
-3.5143.5
-3108
-2.577.5
-252
-1.531.5
-116
-0.55.5
00
0.5-0.5
14
1.513.5
228
2.547.5
372
3.5101.5
4136
4.5175.5
5220
5.5269.5
6324
6.5383.5
7448
7.5517.5
8592
8.5671.5
9756
9.5845.5
10940

Похожие калькуляторы:

Добавить комментарий