Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(10 * x^{2} + x - 2\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(1^{2} - 4 * 10 *(-2)\) = \(1 +80\) = 81

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-1 + \sqrt{81}}{2*10}\) = \(\frac{-1 + 9}{20}\) = 0.4 (2/5)

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-1 - \sqrt{81}}{2*10}\) = \(\frac{-1 - 9}{20}\) = -0.5 (-1/2)

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{1}{10}*x+\frac{-2}{10}\) = \(x^{2} + 0.1 * x -0.2\)

Итого, имеем приведенное уравнение:
\(x^{2} + 0.1 * x -0.2 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-0.2\)
\(x_{1}+x_{2}=-0.1\)

Методом подбора получаем:
\(x_{1} = 0.4 (2/5)\)
\(x_{2} = -0.5 (-1/2)\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(10*(x-0.4)*(x+0.5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 10x²-2

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 10x^2-2

Показать/скрыть таблицу точек
x f(x)
-10998
-9.5900.5
-9808
-8.5720.5
-8638
-7.5560.5
-7488
-6.5420.5
-6358
-5.5300.5
-5248
-4.5200.5
-4158
-3.5120.5
-388
-2.560.5
-238
-1.520.5
-18
-0.50.5
0-2
0.50.5
18
1.520.5
238
2.560.5
388
3.5120.5
4158
4.5200.5
5248
5.5300.5
6358
6.5420.5
7488
7.5560.5
8638
8.5720.5
9808
9.5900.5
10998

Добавить комментарий