Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(10 * x^{2} - 12 * x + 2\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-12)^{2} - 4 * 10 * 2\) = \(144 - 80\) = 64

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+12 + \sqrt{64}}{2*10}\) = \(\frac{+12 + 8}{20}\) = 1

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+12 - \sqrt{64}}{2*10}\) = \(\frac{+12 - 8}{20}\) = 0.2 (1/5)

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-12}{10}*x+\frac{2}{10}\) = \(x^{2} -1.2 * x + 0.2\)

Итого, имеем приведенное уравнение:
\(x^{2} -1.2 * x + 0.2 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0.2\)
\(x_{1}+x_{2}=1.2\)

Методом подбора получаем:
\(x_{1} = 1\)
\(x_{2} = 0.2 (1/5)\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(10*(x-1)*(x-0.2) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 10x²-12x+2

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 10x^2-12x+2

Показать/скрыть таблицу точек
x f(x)
-101122
-9.51018.5
-9920
-8.5826.5
-8738
-7.5654.5
-7576
-6.5502.5
-6434
-5.5370.5
-5312
-4.5258.5
-4210
-3.5166.5
-3128
-2.594.5
-266
-1.542.5
-124
-0.510.5
02
0.5-1.5
10
1.56.5
218
2.534.5
356
3.582.5
4114
4.5150.5
5192
5.5238.5
6290
6.5346.5
7408
7.5474.5
8546
8.5622.5
9704
9.5790.5
10882

Добавить комментарий