Калькулятор квадратных уравнений
Введите данные:
Округление:
* - обязательно заполнить
Уравнение:
\(a * x^{2} + b * x + c\) = \(-18 * x^{2} - 9 * x \) = 0
Дискриминант:
\(D = b^{2} - 4 * a * c\) = \((-9)^{2} - 4 *(-18) * 0\) = \(81 \) = 81
Корни квадратного уравнения:
\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+9 + \sqrt{81}}{2*(-18)}\) = \(\frac{+9 + 9}{-36}\) = -0.5 (-1/2)
\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+9 - \sqrt{81}}{2*(-18)}\) = \(\frac{+9 - 9}{-36}\) = 0
Решение по теореме Виета
Преобразование в приведённый вид
Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-9}{-18}*x+\frac{0}{-18}\) = \(x^{2} + 0.5 * x \)
Итого, имеем приведенное уравнение:
\(x^{2} + 0.5 * x = 0\)
Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)
Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0\)
\(x_{1}+x_{2}=-0.5\)
Методом подбора получаем:
\(x_{1} = -0.5 (-1/2)\)
\(x_{2} = 0\)
Разложение на множители
Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)
То есть у нас получается:
\(-18*(x+0.5)*(x) = 0\)
Основной калькулятор для решения квадратных уравнений