Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

ax2+bx+c = 12x2+10x2 = 0

Дискриминант:

D=b24ac = 1024(12)(2) = 10096 = 4

Корни квадратного уравнения:

x1=b+D2a = 10+42(12) = 10+224 = 0.33 (1/3)

x2=bD2a = 1042(12) = 10224 = 0.5 (1/2)

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
aax2+bax+ca = x2+1012x+212 = x20.83x+0.17

Итого, имеем приведенное уравнение:
x20.83x+0.17=0

Теорема Виета выглядит следующим образом:
x1x2=c
x1+x2=b

Мы получаем следующую систему уравнений:
x1x2=0.17
x1+x2=0.83

Методом подбора получаем:
x1=0.33(1/3)
x2=0.5(1/2)

Разложение на множители

Разложение происходит по формуле:
a(xx1)(xx2)=0

То есть у нас получается:
12(x0.33)(x0.5)=0

Основной калькулятор для решения квадратных уравнений

График функции y = -12x²+10x-2

[plotting_graphs func='-12x^2+10x-2']

Добавить комментарий