Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-6 * x^{2} + 7 * x + 5\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(7^{2} - 4 *(-6) * 5\) = \(49 +120\) = 169

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-7 + \sqrt{169}}{2*(-6)}\) = \(\frac{-7 + 13}{-12}\) = -0.5 (-1/2)

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-7 - \sqrt{169}}{2*(-6)}\) = \(\frac{-7 - 13}{-12}\) = 1.67

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{7}{-6}*x+\frac{5}{-6}\) = \(x^{2} -1.17 * x -0.83\)

Итого, имеем приведенное уравнение:
\(x^{2} -1.17 * x -0.83 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-0.83\)
\(x_{1}+x_{2}=1.17\)

Методом подбора получаем:
\(x_{1} = -0.5 (-1/2)\)
\(x_{2} = 1.67\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-6*(x+0.5)*(x-1.67) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = -6x²+7x+5

[plotting_graphs func='-6x^2+7x+5']

Добавить комментарий