Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-5 * x^{2} - 5 * x + 10\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-5)^{2} - 4 *(-5) * 10\) = \(25 +200\) = 225

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+5 + \sqrt{225}}{2*(-5)}\) = \(\frac{+5 + 15}{-10}\) = -2

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+5 - \sqrt{225}}{2*(-5)}\) = \(\frac{+5 - 15}{-10}\) = 1

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-5}{-5}*x+\frac{10}{-5}\) = \(x^{2} + x -2\)

Итого, имеем приведенное уравнение:
\(x^{2} + x -2 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-2\)
\(x_{1}+x_{2}=-1\)

Методом подбора получаем:
\(x_{1} = -2\)
\(x_{2} = 1\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-5*(x+2)*(x-1) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = -5x²-5x+10

[plotting_graphs func='-5x^2-5x+10']

Добавить комментарий